Final Examination

Part I: Short Answer

Instructions: Place the answer in the space provided. Little or no partial credit will be given. You may use the back pages of your bluebook for scratch work; this work will NOT be examined.

1. (5 pts.) What is the equation of the plane determined by the three points $A(1,0,2), B(3,-1,6), C(5,2,4)$?

Answer:
2. (5 pts.) What is the distance from the point $D(1,-2,3)$ to the plane determined by the points A, B, C in $\# 1$?

Answer: Distance $=$
3. (5 pts.) Let C be the curve that is parametrically given by $\mathbf{R}=$ $3 \sin t \mathbf{i}+4 t \mathbf{j}+3 \cos t \mathbf{k}, 0 \leq t \leq \pi$. What is the vector $\mathbf{T}(t)$ tangent to $\mathbf{R}(t)$?

Answer: $\mathbf{T}(t)=$
4. (5 pts.) Consider the function $f(x, y, z)=e^{x y} \cos (x+z)$. What is the directional derivative for f at the point $P(0,-\pi / 6, \pi / 3)$ in the direction \mathbf{u} parallel to $\mathbf{i}-\mathbf{j}+2 \mathbf{k}$?

Answer: $D f_{\mathbf{u}}=$
5. (5 pts.) What is $\frac{\partial w}{\partial u}$ if $w=e^{x}+x y^{2}, x=3 u-2 v$, and $y=4 e^{3 u-2 v}$? (Express your answer in terms of x and y.)

Answer: $\frac{\partial w}{\partial u}=$
6. (8 pts.) Set up integrals for the mass M and the moment $M_{x}=$ $\iint y \delta d A$ for a thin plate that occupies the region inside the circle $r=2 \sin \theta$, but outside of the circle $r=1$, if the density at any point P on the plate is given by $\delta(r, \theta)=r^{-3}$. Do NOT evaluate the integrals involved.

Answer:

7. (5 pts.) What is the integral formula in Stokes's Theorem?

Answer:

8. (5 pts.) What is $\nabla \times \mathbf{F}$, if $\mathbf{F}=y \mathbf{i}+x z \mathbf{j}+x^{2} \mathbf{k}$?

Answer: $\nabla \times \mathbf{F}=$

Part II: Essay Questions

Instructions: Show all work in your bluebook.

1. ($\mathbf{1 0} \mathbf{p t s}$.$) A thin plate occupies the region x^{2} / 4+y^{2} / 9 \leq 1$. If the temperature of the plate is $T(x, y)=x^{2}+y^{2}-5 y+5$, find the coldest and hottest points on the plate. (Hint: use Lagrange multipliers to check the boundary.)
2. (10 pts.$)$ A conical hole is drilled out of the top of a hemispherical piece of wood having radius $\rho=2$. Given that the angle from the axis of the cone to its edge is $\pi / 3$, and that the vertex of the cone is the center of the hemisphere, find the volume of the piece of wood that is left.
3. (10 pts.) Let C be the line segment from $P(1,0,2)$ to $Q(-2,3,1)$, and let \mathbf{F} be the force given by $\mathbf{F}(x, y, z)=2 z \mathbf{i}-y \mathbf{j}+2 x \mathbf{k}$. Find the work done by \mathbf{F} in moving a particle along C.
4. (12 pts.) Use Green's Theorem to find the counterclockwise circulation and outward flux for the vector field $\mathbf{F}(x, y)=x y \mathbf{i}+x^{2} \mathbf{j}$ and the curve C, where C is the boundary of the region enclosed by the parabola $y=x^{2}$ and $y=x$.
5. Let S be the surface of the solid hemisphere bounded by $x^{2}+y^{2}+z^{2}=4$ (where $z \geq 0$) and the plane, $z=0$, and let $\mathbf{F}=3 x \mathbf{i}+3 y \mathbf{j}+3 z \mathbf{k}$.
(a) ($\mathbf{9}$ pts.) Find Φ, the outward flux of \mathbf{F} across S, by calculating the appropriate surface integral. (Hint: the surface integral has to be split into two pieces.)
(b) (6 pts.) Use the divergence theorem to calculate Φ.
